Home  >  Products  >  KCNQ4 Potassium Channel Monoclonal Antibody (Clone S43-6)
KCNQ4 Potassium Channel Monoclonal Antibody (Clone S43-6)

KCNQ4 Potassium Channel Monoclonal Antibody (Clone S43-6)

Cat no: 13713


Supplier: Cayman Chemical Company
Star_fadedStar_fadedStar_fadedStar_fadedStar_faded
0 reviews | Write a Review Pencil
Antigen: fusion protein amino acids 2-77 of human KCNQ4 . Host: mouse, clone S43-6 . Isotype: IgG1 . Cross Reactivity: (+) human, mouse, and rat KCNQ4 . Application(s): ICC, IP, and WB . The protein encoded by this gene forms a potassium channel that is thought to play a critical role in the regulation of neuronal excitability, particularly in sensory cells of the cochlea. The current generated by this channel is inhibited by M1 muscarinic acetylcholine receptors and is activated by retigabine, a novel anti-convulsant drug.
Catalogue number: 13713
Hosts: Mouse
Applications: Immunocytochemistry, Immunoprecipitation, Western Blot
Weight: 0
Form: 100 microg
Antigen: fusion protein amino acids 2-77 of human KCNQ
P type: Antibodies
Isotype: IgG1
Shipping temp: -20
Storage temp: -20
Additional info: Ion channels are integral membrane proteins that help establish and control the small voltage gradient across the plasma membrane of living cells by allowing the flow of ions down their electrochemical gradient. They are present in the membranes that surround all biological cells and their main function is to regulate the flow of ions across this membrane. Whereas some ion channels permit the passage of ions based on charge, others conduct based on a ionic species, such as sodium or potassium. Furthermore, in some ion channels, the passage is governed by a gate which is controlled by chemical or electrical signals, temperature, or mechanical forces. There are a few main classifications of gated ion channels. There are voltage-gated ion channels, ligand-gated, other gating systems, and finally those that are classified differently, having more exotic characteristics. The first are voltage-gated ion channels which open and close in response to membrane potential. These are then seperated into sodium, calcium, potassium, proton, transient receptor, and cyclic nucleotide-gated channels, each of which is responsible for a unique role. Ligand-gated ion channels are also known as ionotropic receptors and they open in response to specific ligand molecules binding to the extracellular domain of the receptor protein. The other gated classifications include activation and inactivation by second messengers, inward-rectifier potassium channels, calcium-activated potassium channels, two-pore-domain potassium channels, light-gated channels, mechano-sensitive ion channels, and cyclic nucleotide-gated channels. Finally, the other classifications are based on less normal characteristics such as two-pore channels and transient receptor potential channels. The protein encoded by this gene forms a potassium channel that is thought to play a critical role in the regulation of neuronal excitability, particularly in sensory cells of the cochlea. The current generated by this channel is inhibited by M1 muscarinic acetylcholine receptors and is activated by retigabine, a novel anti-convulsant drug.

Get Quote

  • Best Price Guaranteed
  • Quick Response Time
  • Exclusive Promotions
Enquiry_down_arrow
Cayman Chemical Company
Get a Quote Direct from
Cayman Chemical Company

By submitting this form you agree to your details being passed to Cayman Chemical Company for the purpose of generating the best quote*

Button_on Button_off_biosave Button_off_biosave Button_off_biosave Button_off_biosave Button_off_biosave Button_off_biosave